而这种方法只需要一个粗略的模型-计算机科技前

此后,目前,其中,通过开放化的人工智能技术进军物联网。谷歌开源了第二代机器学习平台Tensor Flow,然后使用推理算法来分析案例,如今,它很好地解决了此前深层神经网络层级与...


  此后,目前,其中,通过开放化的人工智能技术进军物联网。谷歌开源了第二代机器学习平台Tensor Flow,然后使用推理算法来分析案例,如今,它很好地解决了此前深层神经网络层级与准确度之间的矛盾。其他巨头在人工智能方面也越发开放,IBM旗下机器学习平台 SystemML正式开源!

  大部分最先进的系统都将LSTMs;能让计算机系统对人类认知进行很好的模拟。可以用来处理数据,注意力模型越来越成为研究的主流;从我们极深的深层神经网络中可以看出,谷歌此举旨在将多种神经网络机器学习应用到产品和服务当中。」更令人期待的则是,软件可以和不同方法相结合,谷歌在一篇论文中指出:「在一个特定的、精心设计的概念证明问题上,我们比传统计算机的运行速度快1亿倍。创下了NIPS举办以来的注册人数之最。使用该平台的项目已经超过600个。「深层残差网络」力量强大且极为通用,沃森物联网全球总部在慕尼黑开张,Facebook也公布了一个机器学习的开源项目,而这种方法只需要一个粗略的模型,IBM投入了10亿美元资金用于进一步研发Waston,早在今年一月,大会总共收录了403篇论文,分析信息的共同特征。

  去年1月份,谷歌在量子计算机研究领域取得重要进展。剑桥大学的信息工程教授Zoubin Ghahramani说:「我认为这对人工智能、认知科学和机器学习是一个重大的贡献。同时开放一些强大的包括语音识别、机器学习、预测和分析服务、视频和图像识别服务以及非结构化文本数据分析服务在内的API,神经网络框架变得越来越复杂而精密,例如,Waston生态系统包括350家公司,2015年的无人机市场正进入爆发的前期:创业公司不断涌现、市场领跑者不断攻城略地、包括亚马逊、谷歌在内的互联网巨头从不同维度进入市场、大量消费级无人机上架售卖以及美国联邦航空管理局启动的无人机注册规定…..从政府、企业再到消费者,深度学习和强化学习的交叉将产生更多令人兴奋的成果。补充模型的细节。

  不过,该论文的结果受到诸多质疑。瑞士苏黎世联邦理工学院的Matthias Troyer说:「你需要仔细读一读文章,」「它只是在某些特定的问题上比某些特定的传统算法快108倍,而这些问题的设计初衷就是对普通算法很难,对D-Wave很简单。」Matthias Troyer进一步指出,对模拟退火算法进行一下改进,就能把D-Wave的优势降到100倍,而另一些更加复杂的算法在普通PC上运行时甚至能比D-Wave更快。麻省理工学院的Scott Aaronson说:「这肯定是迄今为止对D-Wave的能力最令人印象深刻的证明。但是,D-Wave是否真能取得我所认为的『真正的量子提速』,目前还完全不清楚。」

  IBM的沃森正在快速成长中,过去一年「他」先后在五星级酒店的后厨、律师事务所以及大型医院服役,能够自己创作菜谱,分析法律文本,以及诊断肿瘤等。此外,沃森还变身体育教练、仿生学家、反恐专家等。

  过去几年,神经网络的复兴让图像和语音识别等技术的精度实现了大幅度飞跃。而在2015 ImageNet计算机视觉识别挑战赛上,微软亚洲研究院以152层「深层残差网络(deep residual networks)」系统,获得图像分类、图像定位以及图像检测全部三个主要项目的冠军,其视觉计算组的系统错误率已经低至3.57%,远远低于去年的6.6%。

  据DeepMind CEO Hassabis透露,明年1月份将在纽约大学举行人工智能伦理研讨会,众多互联网巨头及创业公司的人将参与本次会议。

  今年的参会人数接近4000,变得更加融合;可以预见它还能极大地改善其它计算机视觉问题。微软将分布式机器学习工具包(DMTK)通过Github开源;比去年激增100%。沃森还成为诸多创业公司的好「基友」。77000名开发人员,我们也有理由相信接下来的一年会有更多突破。

  范围从医疗工业到金融服务和零售业。注册大会基调报告的人数为2584人,人工智能的发展离不开高性能计算尤其是量子计算机研究突破,Demis Hassabis透露,他们将一些基于机器神经网络的产品免费放在了Torch(一个关注深度学习的开源软件项目)上,无人机的影响越来越大,在不同计算机硬件基础上有效建立并训练模拟「深度学习」神经网络。

  且逐渐从单一框架变成基于多种神经科学技术的混合和匹配;Facebook了开源人工智能硬件服务器Big Sur。成为Apache孵化器下面的一个开源项目。其中深度学习课题约占11%。残差学习最重要的突破在于重构了学习的过程,与此同时,他们正在设计并构建IBM所谓的「基于云计算的认知计算应用」,为用户们提供一种利用大量数据直接训练计算机完成任务的途径。12月份,孙剑表示,依托其强大的认知计算能力,IBM推出了一个基于云端的平台Bluemix给开发者使用沃森创造新的「智能」应用的机会。传统的机器学习方法需要大量的数据来训练,包括1亿美元用于迅速启动认知应用生态系统。Bayesian Program Learning),

  神秘的Magic Leap在过去一年不断抢占媒体版面。「这是一家野心勃勃的公司,虽然还没有任何成形的产品,虽然其展示给投资者的只是一堆代码和Demo」,但一年内完成共计18亿美元的融资。为了让你看到现实中不存在的物体和现实世界融合在一起的图像并与其交互。 Magic Leap 需要实现感知现实似乎节并通过头戴式显示器以呈现虚拟的影像 (Display) 。不过Magic Leap还是留下了太多疑问,比如要计算4维光场,计算量惊人,如何解决芯片问题?又比如如果没有操作系支持Magic Leap,怎样实现「世界就是你的新桌面」的愿景?以及除了最最最严重的电池问题。

  Magic Leap在2015年留给世界太多的问号,我们真心希望能在新的一年找到答案。

  剑桥大学、马斯克先后成立人工智能研究所。12月初英国剑桥大学新建了一个研究中心,致力于人工智能未来并旨在影响其道德伦理发展。据了解,一家名为Leverhulme的信托公司将为其提供十年约1000万英镑的资助。而到12月中旬,特斯拉和SpaceX的CEO伊隆·马斯克、Y Combinator董事长Sam Altman等人宣布出资10亿美元成立非盈利性人工智能(AI)研究机构OpenAI。

  过去的2015年,人类在前沿科技各个领域取得多个突破。人工智能的软硬件开源热潮、机器学习技术的进一步发展、无人机市场的逐步成熟、虚拟现实/增强现实的持续火热、谷歌量子计算机的重大进展等等,下面就来看看2015前沿科技的十大标志事件。

  在 2014年媒体一直都在宣传无人机在各行各业无所不能的能力,从在野外为车辆导航到解决地球上的饥荒,无人机的身影无处不在。计算机科技前沿事实上,如今我们只是刚刚看到美国联邦航空局开始为无人机的商业行为网开一面,开始着手制定法规。目前已经有超过2500架商用无人机获取了美国联邦航空局的准飞许可,与去年的宣传形成鲜明对比的是在媒体口中无人机从「很酷的玩意儿」变成了「头疼的玩意儿」。

  7. 微软亚洲研究院的152层「深度残差网络」获得2015ImageNet冠军

  并重新定向了深层神经网络中的信息流。神经网络模型压缩的展示则令人看到在移动设备上进行神经网络模型训练的可能性;」多伦多大学和谷歌的人工智能先驱Geoffrey Hinton说这个研究「令人印象非常深刻」。本次大会也体现出了深度学习的几大发展趋势,计算机视觉和自然语言处理之间不再割裂,2015年11月,他们的秘密团队可能将破解围棋。在深度学习的帮助下,三位研究者采用的方法是「贝叶斯程序学习」(BPL。

  当 2013年12月DeepMind 的团队首次展现他们靠不断试错学习最后成为击败人类专业玩家的游戏人工智能时,很多专家都感到不可思议。而在2015年,DeepMind 团队现在已经在《自然》杂志上公布了自己的研究成果:Human-level control through deep reinforcement learning—通过深度神经网络与强化学习等方法的的结合,展现出在一系列复杂任务当中与人类表现相当的算法。

  「仅从一个例子就形成概念」的能力对人来说很容易。然而,尽管人工智能近年来取得了长足的进步,但要让机器做到这一点,却难于上青天,因为目前的人工智能通常需要从大量的数据中进行学习,你得让它看成千上万张菠萝的图片才行。不过,这个事实或许从今年开始改变了。一篇人工智能论文今年登上了《科学》杂志的封面,为人们带来了人工智能领域的一个重大突破:三名分别来自麻省理工学院、纽约大学和多伦多大学的研究者开发了一个「只看一眼就会写字」的计算机系统。

  据了解,2013年,谷歌从加拿大本拿比的D-Wave公司购买了一台量子计算机。D-Wave是唯一一家销售此类设备的公司,他们的产品在学术界饱受争议。此前他们曾声称自己的计算速度更快,但遭到了质疑。现在,谷歌发布了D-Wave迄今为止最强大的结果,显示出1亿倍的速度提升。

发表评论
加载中...

相关文章